Improving Power Supply Induced Jitter Simulation Accuracy

CENTER FOR

CENTER FOR

CENTER FOR

¹Chulsoon Hwang, ¹Yin Sun, ²Zhiping Yang, ³Randy Wolff, and ⁴Bob Ross

¹Missouri University od Science and Technology ²Google ³Micron ⁴Teraspeed

Ku(t) & Kd(t) Modification (An Example)

Modify Ku(t), Kd(t) as a function of <u>time averaged</u> power rail voltage Vcc(t); introduce correction coefficient A and B as a function of <u>time</u>

Implementation in Open-Source Spice (Ngspice)

Implementation in Ngspice (Modify based on current ibis2spice algorithm)

- 1. Ku0, Kd0, Bu, Au, Bd, Ad calculated offline from rising/falling waveforms
- 2. From input switching edge dv/dt, judging rising or falling

Implementation (Cont.)

3. Record elapsed time since every switching event

Implementation (Cont.)

4. Implement the time averaged Vcc

Implementation (Cont.)

5. Implement the modified Ku, Kd as B source

Discussion - Why Propagation Delay Needed?

1) Different propagation delay, different breaking frequency

Y. Shim and D. Oh, System Level Modeling of Timing Margin Loss Due to Dynamic Supply Noise for High-Speed Clock Forwarding Interface, TEMC, 2016

2) Just a jitter sensitivity number (ps/mV) is not enough

- Jitter could be different even for the same frequency power noise
- Muti-tone power noise case

Discussion – typ/min/max variation

Comments from the previous meeting

- Rising/falling waveforms may not have the same t=0 reference across typ/mix/max variants.

- typ/min/max variations represent process and temperature, not just voltage

→ Using typ/min/max variations for PSIJ simulation seems to be challenging

- \rightarrow Only voltage variation needs to be included
- ➔ Propagation delay + jitter sensitivity @DC

New Keyword

[XYZ] | this keyword provides information on power supply induced jitter and additional internal path delay

Parameter	typ	min	max
dt/dv	0.166	NA	NA
int_path_delay	0.20e-9	0.19e-9	0.21e-9

dt/dv: jitter sensitivity at DC (seconds/volt) for the entire path (internal path + buffer) Internal path delay: delay to be added to Ku(t)/Kd(t)

[Initial Delay] could replace this with an appropriate time 0.

Extracted Ku(t) and Kd(t)

• How the modified Ku(t), Kd(t) account for Vcc(t) caused delay change

1. At each time point, use Ku, Kd under three cases => B(t), A(t);

2. B(t), A(t) can account for the delay change due to Vcc(t) noise;

3. The total effect of Vcc(t) during the time range of propagation delay is considered by the time-averaged Vcc(t)